Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98
نویسندگان
چکیده
Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions.
منابع مشابه
Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98
Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediat...
متن کاملGenome Annotation of Burkholderia sp. SJ98 with Special Focus on Chemotaxis Genes
Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholde...
متن کاملMetabolism of 2-Chloro-4-Nitrophenol in a Gram Negative Bacterium, Burkholderia sp. RKJ 800
A 2-chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatogra...
متن کاملAnalysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1.
Arthrobacter sp. strain IF1 is able to grow on 4-fluorophenol (4-FP) as a sole source of carbon and energy. To clone the 4-FP degradation genes, DNA libraries were constructed and screened with a probe obtained by PCR using primers designed on the basis of conserved regions of aromatic two-component monooxygenases. Sequencing of positive clones yielded two gene clusters, each harboring a gene e...
متن کاملKinetics of biodegradation of p-nitrophenol by different bacteria.
Three bacterial species, i.e., Ralstonia sp. SJ98, Arthrobacter protophormiae RKJ100, and Burkholderia cepacia RKJ200, have been examined for their efficiency and kinetics behavior toward PNP degradation. All the three bacteria utilized PNP as the sole source of carbon, nitrogen, and energy. The rates of radiolabeled [U-(14)C]PNP degradation by all the bacteria were higher in the nitrogen-free ...
متن کامل